
© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Running efficient Kubernetes
clusters on Amazon EC2
with Karpenter

Principal Specialist Solutions Architect

AWS

Brandon Wagner

Software Development Engineer

AWS

C M P 4 0 5 - R

Steve Cole

Just-in-time nodes for any Kubernetes cluster

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agenda

What is Karpenter

How Karpenter works

Karpenter and Flexible Compute

Best practices with EKS

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Auto scaling group

4vCPUs 16 GB Spot

Cluster Autoscaler scale-up

HPA >> Pending pods

Auto scaling group

8vCPUs 32 GB Spot

EKS Cluster

Expander

New nodes10 sec

1 vCPU request

Node

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Karpenter scale-up

Default: all standard

instance types

HPA >> Pending pods

instanceFamilies:

[m5, m5a, m6i, …]

EKS Cluster

• Works with kube-scheduler to provision the right set of nodes

• Supports all scheduling constraints: Topology Spread, Node/Pod Affinity and
Anti-Affinity, etc.

1 vCPU request

Node

x sec OR New node

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Karpenter
G R O U P L E S S P R O V I S I O N I N G A N D A U T O S C A L I N G

• Improve the efficiency and

cost of running workloads

• Simplification of

configuration

• Kubernetes native

• Flexible compute built in

What if we remove

the concept of

node groups?
• Provision capacity directly with “instant” EC2 Fleets

• Choose instance types from pod resource requests

• Provision nodes using K8s scheduling constraints

• Track nodes using native Kubernetes labels

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How Karpenter works

Consolidates instance orchestration

responsibilities within a single system

CA ASG
EC2 API

Cluster

Auto-

scaler

Auto

Scaling

GroupPod

Autoscaling

Pending

pods

EC2 Fleet

(instant)

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Karpenter
N O D E P R O V I S I O N I N G

• Kube Scheduler gets the

first crack at scheduling

pending pods. Tries to

schedule on existing

capacity

• Karpenter observes

aggregate resource

requests of

unschedulable pods

(set by kube scheduler)

to make decisions on what

instances to launch

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Karpenter
B I N P A C K I N G

1 2 3 4

2

4

6

8

10

12

14

16

vCPUs

Memory (GB)
Online binpacking

• karpenter.sh/capacity-type=spot

• karpenter.k8s.aws/instance-family=m6i

• kubernetes.io/arch=arm64

• topology.Kubernetes.io/zone=us-west-2a

Well-known labels

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Karpenter Scale-In

Consolidation actively

seeks out opportunities to

make the cluster more cost

efficient

HPA << Pending pods

Karpenter

• Replace underutilized nodes with more efficient compute

• Node Expiration TTL

• kubectl delete node with graceful draining
1 vCPU request

Node

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Compute flexibility with Karpenter

EKS cluster

Karpenter provisioner

AZ 1 AZ 2 AZ 3

g4

g5P4

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Provisioner
CRD
• Provisioner – custom

resource to provision nodes
with a set of attributes
(taints, labels,
requirements, TTL)

• Single provisioner
can manage compute
for multiple teams
and workloads

• Can also have multiple
provisioners for isolating
compute for different needs

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Compute
flexibility

• No list → picks from all
instance types in EC2
universe, excluding metal

• Attribute-based
requirements → sizes,
families, generations,
CPU architectures

• Provision in any AZ

• Provision in specified AZs

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Compute
flexibility

• x86-64

• Arm64

• On-demand, if
nothing specified

• Prioritizes Spot if flexible

to both capacity types

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Node template
CRD
• AWS node template –

configures cloud provider-
specific parameters, such as
tags, subnets, and AMIs

• Supports custom user-data
and AMIs without launch
templates

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Compute per workload
scheduling requirements

Pod scheduling constraints must fall

within a provisioner’s constraints

Standard K8s pod scheduling mechanisms

Workloads may be

required to run

In certain AZs

On certain types

of processors or hardware

(AWS Graviton, GPUs)

On Spot or

on-demand capacity

Node

selectors

Node

affinity

Taints and

tolerations

Topology

spread

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Karpenter
S P O T D E P L O Y M E N T

16

• Price Capacity Optimized

• Reduce the frequency of Spot terminations

• Reduce the cost of the instances

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Spot notification

Spot interruptions

The work you are doing to

make your applications fault-

tolerant also enabled Spot

Spot is optimized for

stateless, fault-tolerant, or

flexible workloads

• 2-minute Spot Instance interruption notice via

instance metadata or Event Bridge event • Implement node termination handling for interruptions,

thus increasing chance of completing work

• Capture the spot termination signal and implementing

graceful termination and best effort checkpointing.

What do you do?

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Best practices
with EKS

• Use Karpenter for workloads with

changing capacity needs

• Do not run Karpenter on a node that

is managed by Karpenter

• Karpenter controller on EKS Fargate

or on an OD worker node (1 node

nodegroup)

• Exclude instance types that do not

fit your workload

Karpenter

Provisioner
• Enable Consolidation

• Use Node Expiration TTLs to rotate nodes

• Use a diverse set of instance types

Scheduling Pods

• Follow EKS best practices for high availability

• Use nodeSelectors and taints for colocation

• Create billing alarms to monitor your compute spend on

top of Resource Limits

• Use the do-not-evict annotation for critical nodes

• Use LimitRanges to configure defaults for resource

requests and limits on a namespace

https://karpenter.sh/v0.6.1/tasks/scheduling/#selecting-nodes
https://karpenter.sh/v0.6.1/tasks/scheduling/#taints-and-tolerations

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Recap

Karpenter provides asynchronous infrastructure management

Karpenter is compatible with native K8S scheduling

Karpenter is open-source and evolving quickly

Karpenter offers compute flexibility and cost optimization

Now let’s experience Karpenter first-hand in our workshop

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Workshop link and hash

https://ec2spotworkshops.com/

1b69-1209dfdbe4-3f

5. EKS and Karpenter … at an AWS event

https://ec2spotworkshops.com/karpenter.html

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

Please complete the session
survey in the mobile app

